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THE DISTRIBUTION OF INTERVALS BETWEEN ZEROS OF A
STATIONARY RANDOM FUNCTION

By M. S. LONGUET-HIGGINS
National Institute of Oceanography, Wormley

(Communicated by G. E. R. Deacon, F.R.S.—Received 21 August 1961)
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The probability density P,, of the spacing between the ith zero and the (i+m+1)th zero of a
stationary, random function f(¢) (not necessarily Gaussian) is expressed as a series, of a type similar
to that given by Rice (1945) but more rapidly convergent. The partial sums of the series provide
upper and lower bounds successively for P,. The series converges particularly rapidly for small
spacings 7. It is shown that for fixed values of 7, the density P, (7) diminishes more rapidly than
any negative power of m.

The results are applied to Gaussian processes; then the first two terms of the series for P, (7)
may be expressed in terms of known functions. Special attention is paid to two cases:

(1) In the ‘regular’ case the covariance function y(¢) is expressible as a power series in ¢;
then P, (7) is of order 7m+Am+3-2 a¢ the origin, and in particular P (7) is of order 7 (adjacent
zeros have a strong mutual repulsion). The first two terms of the series give the value of Py(7)
correct to 718,

(2) In asingular case, the covariance function (¢) has a discontinuity in the third derivative.
This happens whenever the frequency spectrum of f{¢) is O (frequency)~* at infinity. Then P, (7) is

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

VoL. 254. A. 1047. (Price 14s.) 68 [Published 24 May 1962

[ ,Q
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to @% 2

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

558 M. S. LONGUET-HIGGINS

shown to tend to a positive value P,,(0) as 7 — 0 (neighbouring zeros are less strongly repelled).
Upper and lower bounds for P,,(0) (m =0, 1, 2, 3) are given, and it is shown that P,(0) is in the
neighbourhood of 1-155¢%"/( —6y"). The conjecture of Favreau, Low & Pfeffer (1956) according
to which in one case P,(7) is a negative exponential, is disproved.

Inafinalsection, the accuracy of other approximations suggested by Rice (1945), McFadden (1958),
Ehrenfeld ¢t al. (1958) and the present author (1958) are compared and the results are illustrated
by computations, the frequency spectrum of f(t) being assumed to have certain ideal forms: a
low-pass spectrum, band-pass spectrum, Butterworth spectrum, etc.

INTRODUCTION

The problem of finding the statistical distribution of the intervals 7 between zeros of a
stationary, random function f(f) is one with many physical applications, for example, to
noise in electrical circuits (Rice 1944, 1945; McFadden 1956, 1958), sea waves (Ehrenfeld
et al. 1958), microseisms (Longuet-Higgins 1953) or irregularities in the ionosphere (Briggs
& Page 1955; Longuet-Higgins 1957). Yet in one most useful case, when f(#) itself is
Gaussian, only approximate solutions to the problem have been found. One such solution
was given in a previous paper (1958). In the present paper the solution is expressed in the
form of a series, in which each term is an integral of the joint probability

W(t, —, — ey —)dty ... dt,

that f(¢) have an up-crossing in the infinitesimal interval (¢;,¢, +d¢;) and a down-crossing
in the remaining (n— 1) intervals (¢, ¢4-d¢;) (i = 2,3, ..., 7). The series is somewhat similar
to one given earlier by Rice (1945) but converges more rapidly. Moreover, successive
partial sums of the series provide upper and lower bounds to the required distribution Py(7).
The present series leads to a much more accurate estimate of the behaviour of £, near the
origin 7 = 0 and to a systematic comparison of other approximations that have been
previously proposed.

Following Rice (1945), the probability density of the interval between the ¢th and the
(t+m-+1)th zero of f(¢) is denoted by P, (7) ; and the probability of exactly z zeros occurring
in the interval (¢, £+7) is denoted by p(n, 7). In§1 of this paper, some relations between the
W and the P,(7) are proved, and series are obtained for both P, (7) and p(n,7) in terms of
the . One result is to show that P,(7) decreases with m more rapidly than any negative
power of m. The relations are quite general, and no assumption is made as to the Gaussian
character of f(¢). It is assumed only that f(f) is statistically stationary; that —f{¢) is
statistically equivalent to f(f) (i.e. that f(¢) is statistically symmetric with regard to the
axis f = 0); and that the various quantities defined actually exist. '

In § 2 we obtain explicit expressions for the I in terms of the covariance function of f{%),
which is denoted by ¥ (¢). By using some recent results of Kamat (1953) and Nabeya (1952)
it is shown that W(+, —, —) can in fact be expressed in terms of known functionals of
¥(t), a fact not apparently used previously. Moreover, in special cases the W can be
evaluated for any integral 7.

The results are applied in §3 to the case when ¥ (¢) is itself a regular function at £ =0
(implying the differentiability of f(¢) up to all orders). Thus it is shown that for small
intervals |£,—¢;| _

W(+3 =5 Ty e (_)n 1) ~ Cnn (tj_ti)a

i<j
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where C, is a constant independent of the #. Hence the asymptotic behaviour of P, (7) and
p(n,7) for small 7 is obtained. In particular it is shown that

Pm<7') oc T%(m+2)(m+3)—2
and p(n, ) oc Thuta+D),

The power of 7 increases rapidly with m or n, indicating a strong ‘mutual repulsion’ of
neighbouring zeros of f(t).

A very interesting singular case is studied in §4, when the covariance function ¥ (¢),
instead of being regular at ¢ = 0, has a finite discontinuity in the third derivative f”(¢).
Thisoccurs, for example, whenever thespectral density of /(¢) is proportional to (frequency) —*
at high frequencies, and some examples have been studied experimentally by Favreau,
Low & Pfeffer (1956). In contrast to the regular case, it is shown that, for small spacings

Iti—tj[’ 1 F(tl)t23~ ) n)
W(+t, = 4, s ()" ~ (ta—1,) (by—1y) - (£, — 1, )

where F(t,t,,...,¢,) is a function of the (f—
bounds. It follows now that P

m

(n=2),

t;) lying between positive upper and lower
(r) oc 70 (m>0),
and p(n,7) c 2 (n=2),
so that, as 7 — 0, P,(7) tends to a value P,,(0) independent of 7.
Moreover, upper and lower bounds for P,,(0) can be found. Thus
1-147a < P,(0) < 1-218a,

where a = §”(0+)/{— 6¢"(0)}. This result enables us to disprove rigorously the ‘exponential
hypothesis’ of Favreau et al. (1956), whereby the distribution of intervals 7 for the function
whose spectrum is (14 02)~2is conjectured to be 77! e¢~7/7. For this would make

Py(0) = 371 = 0-955¢,

in contradiction to the above inequality.
Some rough work shows that a close approximation to Fy(7) is probably

Py(0) = 1-155a.

Lastly in §5 we use the asymptotic expansions of P,,(7), p(n,7) and the W to compare the
accuracy of the approximations proposed by Rice (1945), McFadden (1956, 1958),
Ehrenfeld et al. (1958) and the present author (1958), especially in the neighbourhood of
the origin. Numerical computation of the various approximations is also compared with
experimental results of Blotekjaer (1958) and other authors.

1. GENERAL RELATIONS BETWEEN P, (7), p(n,7) AND W(S)

Let W(+, +, ..., +)dt; ... d#, denote the probability that the function f(f) have an up-
crossing (zero-crossing with positive gradient) in each of the intervals

(z’ z+dt) (i=1,.._,n);

by substituting a minus sign for any plus sign in W(+, +, ..., +) we denote the corre-
sponding probability for a down-crossing. Thus W(+, —, +, ..., (—)*"!) d¢, ... d¢, denotes

the probability of alternate up-crossings and down-crossings in (£, t;,--d;), the first being
68-2
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560 M. S. LONGUET-HIGGINS

an up-crossing. Itwill be seen later that the W may in many cases be evaluated explicitly
in terms of the covariance function of the random process f{(#).

In this section we shall derive some quite general relations between P,,(7), p(n,7) and the
W, which are valid not only for Gaussian but for non-Gaussian processes.

1-1. Generalization of a result of McFadden
It was pointed out by McFadden (1958) that

]'(+’_)~ o
Wiy = BO+ROFRm - (1-1-1)
W(+,+) 1.
B /S (AR IORE ORI (1-1-2)

where 7 = (¢,—1,). The proof is very simple: the left-hand side of (1-1-1), when multiplied
by d#,, represents the probability that f has a down-crossing in (¢, £,+d¢,) given that it
has an up-crossing at ¢;. This down-crossing must be either the next zero of f; or the next but
two, and so on. These mutually exclusive events correspond to the individual terms on
the right of (1-1-1) ; hence the identity. A similar argument proves (1:1-2).

Corresponding to (1-1-1) and (1-1-2) we may establish the following three relations:

W(+, — +) = o]
fz.<,2<,3w dty = Py(r) +285(r) +3F5(r) + ..., (1-1-3)
Wit, = =)y, _ ) .
Lﬁ%h wiry = BN +2Rn)+3K(0) 4, (1-1-4)
w
f - (;Zj) +) dt, = Py(7) +2F5(7) + 3F(1) +- ..., (1-1-5)
h<ia<is
where 7 = ({3—t,;). To prove (1-1-3), for example, consider
Wi+, —, +
’JW—(_F*)“*—) dtzdt3.

This represents the probability that fhas a down-crossing in (4, t,-+dZ,) and an up-crossing
in (t3,43+dt,), given that it has an up-crossing at ¢,. Now the up-crossing in (£, ¢;+d#,)
is either the second zero after ¢, or the fourth or the sixth, etc. Suppose it is the (2r)th.
Then the down-crossing in (£,, t,+d¢,) is either the first zero after ¢, or the third or the fifth,
up to the (2r—1)th. But if the probabilities are each integrated with respect to ¢, from
t, to t3 each gives precisely P,,_;d¢;. The r possibilities together contribute rP,,_,d¢;. Hence
the series (1-1-3) ; and similarly for (1-1-4) and (1-1+5).

We now prove the following general theorem. Let S denote any sequence of 7 signs,
plus or minus, the first sign being +-, and let s denote the number of times that the sequence
changes sign. (For example, if § = (4, —, 4, —) then s = 3.) Then the expression X(S)
defined by

_ w(s) 1
X(S) o J‘.“ft1<lz<‘..<ln W(+) dtz di"wl (1 1 6)
is the sum of the series
o (n—24
X(S) = r;) ( 7 T) P2n—3—s+27(7): (117)

where 7 = (¢,—t,) and (l; ) denotes the coefficient of x2 in (1 x)?.
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Proof. The integrand in (1-1-6) represents the probability that the (n—1) intervals
(4, t,+dt,) (i1=2,8,...,n), contain zero-crossings of f(¢) with gradients of the appropriate
sign, given that f vanishes at #,. Suppose that the last interval (£,,¢,+d¢,) contains the
(k4 1)th zero of f after ¢;. The remaining (zn—2) intervals (¢,, t,+déy), ... (£,-1, £,—1 +dt,_1)
must contain (n— 2) of the remaining & zeros between ¢, and £,. Each distinct way of choosing

these (n—2) zeros contributes a term P (7) to the integral X(S). Hence
X(5) = 2. Bil7),

where ¢, denotes the number of distinct ways of choosing the sequence § from a sequence
S’ of (k+2) signs, alternately 4+ and —, so that the first and last signs of S~ correspond to
those of S.

Now between each pair of successive signs of § that are both + (or both —) there must
be an odd number of'signs of . From the definition of's there are (n— 1 —s) such cases, and so

k+2 =n+(n—1—s)+2r,

where 7 = 0,1, 2, .... The remaining r pairs of signs of S" may occur anywhere in the (n—1)
gaps between the signs of S. The number of distinct ways of disposing of these is

“—2+3
€ = .

pe

On combining the last three equations we obtain (1-1-7).
It follows from the theorem that in the sequence § the only two relevant parameters

are n and s. So we may write X(S) = Xn,s,

(1-1-8)
The following special cases will be useful. When § = (4, +, ..., +) then s = 0 and
Xo= 3 (") By (1-1-9)
When § = (4, —, —, ..., —) thens = 1 and
Xi- 3 (") Bucsran (1-1-10)
When § = (+, —, +, ..., (—)*!) then s = (n—1) and
K= 3 (")) Pz (111)

From these series there follows also a useful result on the order of magnitude of P, (7) for
large values of m (when 7 is fixed). For the binomial coefficient in each case is

(n—r2~|—r) _ (n—2+71) (zzn——_32—;—!r) e (I41) 0(rm-2)

as ¢ tends to infinity. But if the series converges the individual terms must each tend to zero.

So from (1-1+9), for example, .
].lm T"~2P2n__3+2r == On

r—>c0
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562 M. S. LONGUET-HIGGINS

In this expression the factor 7»~2 may be replaced by (2n— 3+-2r)"~2 without altering the
limit. So limm»=2P, = 0 (1-1-12)
if m tends to infinity through the odd values; and similarly for the even values.

Thus P, (1) tends to zero more rapidly than m~*~?, 7 being kept constant. Provided, then,
that the X, | exist for all values of #, it follows that P, (7) tends to zero more rapidly than
any negative power of m.

1-2. Series for P, (1)
Equations (1:1-1) to (1-1-5) may be written

PO:X(+,—)—(P2‘|‘P4+P6+'--)9} (1-2:1)
P = X(+,+) = (Py+ B+ Byt ...),
and?t P = X(+,—, +)—(2P,+3P,+- 4P, +...),
P = X(+,—, =) — (2P, 43P+ 4P, +...), (1-2-2)
Py = X(+, +, +)— (2FP5+ 3P, +4F+ )I

Rice (1945) and McFadden (1958) neglected P, P, ... and took as an approximation
B+ X(+, )}
P o= X(+, +).

However, by eliminating P, and P; from the right-hand side of (1-2-1) by means of equations
(1-2-2) we have

(1-2:3)

Py=X(+, =) =X(+, =, =) +(P+2P+3P+...),|

1-2-4
Pi=X(+, +) = X(+, +, +) + (B+2P+3P+...) | )
so that a higher approximation, neglecting only P,, P, ... is given by
P=X s T —X s Ty T 9\
0% Xk =) =X =) o

Itis easy to show that these approximations are the first in an infinite sequence. Equa-
tions (1-1-10), which involve only the even P,,, may be solved for P, by multiplying the first
equation (n = 2) by 1, the next by —1, and so on up to n = N, and adding. On the right-
hand side the coefficient of P,;, when ¢ < N, is

(é)‘(i)Jr(;)w“'H”ly(z'):{(1) Ei);(?; N),
and when ¢ > N it is
(6= () o)== () = =7 ().
Hence X, ,—X; 1 +X, = .+ (=) Xyio
_ 0+(—1)N|:PZN+2+(N;“1)P2N+4+(N;2)PZN+6+...:|. (1-2-6)

+ The five equations (1-1-1) to (1-1-5), regarded as equations for the P,, are not independent, for we have
the identical relation X(+,—,+)=X(+, 4, +) = X(+, +).
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Thus provided the expression in square brackets tends to zero we have
Po=X, | — X3 |+ X, — e (1-2-7)
and similarly P=X, o= X; 0+ Xy g—-... (1-2-8)

The approximations (1-2-3) and (1-2-5) correspond to the first two partial sums of these
series.
Moreover, the remainder after (N-+1) terms of the series is

N+1 N2
(=101 Pt (1) Bavaat () Powvo o] (1-2:9)

which, since the P are all positive, has the same sign as (—1)¥+!. Hence the sums of the
series (1-2-7) and (1-2+8) lie between any two successive partial sums.

The corresponding series for P, and P,,,; (r > 0) are found from (1-1-10) and (1-1-9)
to be

Il

1

(r+1
)l( Z )Xr+2+i,0

el (T
P2r 2 (M l)l ( . )Xr+2+z', 1
0 (1-2-10)
Py = lgo(“l

(the coefficients in the two series being identical). The solution of (1-1-11) for 7, is

m-+2i)!
7! ((mﬁlﬁ Xm+2+2z' (1~2-11)

By = (m+1) 3 (~1)

for all m > 0, where X, is written more shortly for X,

».n-1- The solutions are valid provided
each series is absolutely convergent.

1-3. Relation to a series of Rice

It is interesting to compare the series (1-27) for Fy(r) with one stated by Rice (19435,
equation (3-4-11)). His series may be written

P =Y,-Y,+Y,—.., (1-3-1)
1 tn e W(4, £, )

where Y, = =), ), W(x)
and W(+, +, ..., +)d¢ ... ds, denotes the probability of a zero-crossing in each of the
intervals (¢, £, d#) irrespective of the sign of f”(f).

Now from the point of view of calculation ¥, is of a similar complexity to X, |, since each
involves an (n—2)-fold integration of a probability density such as W(S). On the other
hand in the series (1:3-1) the first term neglected after N terms is Yy, 3, which is of order
P, ., (see below), whereas the remainder after N terms in the series (1-2:7) is only of order
Py, Clearly then (1-2-7) is more rapidly convergent than (1-3-1).

The reason for this difference is apparently that in deriving (1-2:7) we have made use
of the continuity of f'(#) which implies that up-crossings and down-crossings follow one
another alternately. In (1-3-1) no such property is used.

For completeness we now express Y, in terms of the P,(7).

dt,...dt,_, (1-3-2)
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564 M. S. LONGUET-HIGGINS

Since —f(¢) is assumed statistically equivalent to f(¢), the integrand in (1-3-2) may be
replaced by W(+, 4+, 4, ..., +)/W(+); and further by the symmetry of the integrand
with respect to £,, ¢, ..., £,_, we have

— W(_|_9 :ta i:---; i)
Y, 'f'”ft,<t2<.,.<t,. v en dty...dt, .

Now W(+, 4, 4, ..., +) can be considered as the sum of 2"~ ! expressions of the form W(S),
where §'is a sequence of z signs such as was defined in §1-1. Corresponding to any given

n—1
value of s there are ( s ) such sequences S. Hence

RS )

n <o s n,s*

But X, ; or X(S) is given by (1-1-7). Thus

nl @ m—1\ (n—2+7
Y”: z z ( )( * )Pn—2+s+2r'

s=0 =0 s 7

The coeflicient of P,_,,; may be summed by comparing coeflicients of 4’ in the expansion
of the identity (1 _'_x)n_.l (1 #x2) ~(n-1) — (l "“x) —(n-1)

in powers of x. Hence _
Y= 3 ("7 P (13:3)

i=0

The first term in this series is P,_,, which proves our statement concerning the order of
magnitude of Yy, ; made above.
The solution of equations (1-3:3) for the P, is

}

< . (m—-1
P, = '=zo (_l)l( )Ym+2+z‘s (1-3-4)
of which (1-3-1) is the special case when m = 0.

1-4. Series for p(n,T)
McFadden (1958) has shown that p(n, 7) (the probability of exactly 7 zeros in the interval
(¢,t+7)) is related to P,,(7) by the following set of equations:

p"(0,7) = 2W(+) By,
p"(1,7) = 2W(+) (P —2F), (1-4-1)
p(ny7) = 2W(+) (B, —2F,_,+F,_5) (n>2),)

where a prime denotes differentiation with respect to 7. On substitution for P, P,_;, P,_,
from equations (1-2-11) we have in the general case

P (7) = 2W(+) 3 C, Ko (1-4-2)

i=0

+ The first of these relations is apparently due to Kohlenberg (1953).
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where Cho=1
—9 !
Cpray = (=1t (2r—n ) B2E20E (o gy,
’ rl(n-+r)! (1-4:3)
B . (n—142r)!
Coyorar = (= 1) 207 ) (r=0)
Now by definition
W(+: st s (_)n—l)
x, =[] ’ di, ... dt 144
n bty <ol W(+) 2 n ( )
which is a function of 7 = (¢,—t;). Hence
I o A
where In:f...f Wty =,y e (—)=1) dty .. dt, (1-4-6)
0<t<...<tp<T .

On substituting in (1-4-2) and integrating twice with respect to 7 from 7 = 0 we have

1) =2 3 G il i) (1-47)

provided the constants of integration vanish. The first term in this expansion is 27,.

Let R(¢) denote the covariance function of the function §(#) which equals 1 when £(¢) > 0
and —1 when f(#) < 0. Rice (1944) showed that

R(t) = p(0,7) —p(1,7) +5(2,7) —..

By differentiating twice and using equations (1-4-1) one obtains

R'(1) =8W(+) (Fp—P,+P,—...) (1-4-8)
(McFadden 1958). From the first two equations of § 1-1 it follows that

R'(r) = 8[W(+, =) = W(+, +)]. (1-4:9)

2. EvaruaTioN oF W(S) FOR GAUSSIAN PROCESSES

We now specialize the discussion to the case when f{f) is Gaussian, and seek some explicit
formulae for W(S) in terms of the covariance function of f{(?).

2-1. A general expression for W(S)
Consider first the probability W(+, +, ..., +) d¢; ... d¢, that f(¢) should have a zero

up-crossing in each of the small intervals (¢, t;+d¢t,) (¢ =1, ...,n). For convenience write
f(tz') = gi) f,(ti) =1 (Z: 1’ ceey n)a
and let p(&,, ...,&,; 715 ---» 77,) denote the joint probability density of the ; and #;. Thus
DEr b My oes 1) dEy oo dE,, dyy . dy, (2:11)

is the probability that the £, and 7, lie in given intervals (&,§+d&), (7, 7,+dy;). Now if
f(#) has a zero-crossing in (t, t,+dt,), with gradient 7;, then f(#,) must lie in a small range of
values of extent |7;| dt,. Thus to obtain the probability W(+, +, ..., +) d¢; ... d?, we replace

69 Vor. 254. A.
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d§; in (2-1-1) by |7,] d4, and integrate over all positive values of the 75,. After dividing by
d¢, ... d¢, we have

Wy o ) = [ [ 20, s 05 ) iy (212
For the covariance function of f(f) we write

SO S(t+1) = (7).
The function ¢(7) (or ,) is considered as given: it is the cosine transform of the spectral
density of f(¢).
Then the covariance matrix of the 2z variables &, ...,£,; 71, .., 77, 18

%ll ce ¢ln ¢Jll ¢Jln

O I T T N B (213

~Yu - Y —¥n . YL

—¢l:11 '*“ﬁ;m _—%;21 e T ;:n

where ¥, = ¥(£,—¢;) and a prime denotes differentiation.
By the Gaussian hypothesis we have
‘ 1 1 2n

P& oo s s My s W) = (2m) A expl:__'z—i’jz:_lLijgigj:la (2-1-4)
where £,,; =7, and A=[A;)], (Ly) = Ay~ (2:1-5)

Substitution in (2-1-2) gives

1 . 0 0 1 n
Wit oo 1) = oo [ [ el e[ =5 3 Loy Jay .,

The summation in the last equation involves only the last n rows and columns of (L;).
It is convenient to denote the inverse of this matrix by (u;)

Ln+l,n+l Ceer Ln%l,?n ’
(45) = : : (2-1-7)
L2n,n+1 L2n,2n

=1

By Jacobi’s theorem the (7, s)th element of this matrix is the bordered determinant

3&11 o ¢:ln ¢Jls

t =D, (2:1-8)

ﬂr,s - [ ¢-lnl oo ¢7m iﬁ;ls |
=V e Y Y
where Ui e Y
D= ] S (2-1-9)
¢n1 ¢7m

The determinant of (x,;) is given by
|(u3)] = A/D. | (2:1-10)
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(#;) will be recognized as the covariance matrix of (7, ...,7,) given that
=8 =...=§=

For, if p(ny, ..., 7,0 .-, €,) denotes the conditional distribution of (#,,...,7,) for given
values of (£, ...,§,) we have

p(’]l’ ey ”n)lgli‘“’gn

) :p(gb Jgns T :ﬂn)
) p(gla agn) ’

where p(§, ..., &,) is the distribution of (§,, ..., ,) only
1 1 n
p(gl,‘. ooy §n> = m eXp [_é i”jz:l M] gzgj:li

where (M};) is the inverse of (¥;;). Hence when the §; vanish we have, using (2-1-10),

1 1 =z
P55 7,05 ., 0) = WCXP I:—‘Q i’jz__.ann;nu’h’Ij] =Z(n,w),

say. With this notation (2-1-6) may be written

l {ve] o0 '
W, 4y ooy +) = @W—"D%fo fo ooy Zonw) gy oo dy, (2:1011)

Itis convenient tointroduce the normalized convariance matrix (v;) whose (z, 7 )th element

18

vy = Hij g (2-1-12)

(s 155)

Then on writing G= (),
in equation (2-1-11) so that (v;;) is the covariance matrix of the new variables {;, we have

(#1199 - ﬂnn) 1.
W(+, 45y +) = oD J, (2-1-13)
where J, :f f R VAD L (21-14)
o Jo

Now Z(8,v) is the ordinary normal probability density in the z variables {;, with covariance
matrix (v;). Since the diagonal elements have been normalized (by equation (2:1-12)),
J, is a function only of the off-diagonal element v;; (¢ #4=7).

Suppose that one of the zeros in the sequences (say the kth zero) is to be a down-crossing
instead of an up-crossing. Then in calculating the corresponding probability density W
we need only to take the range of integration of 7, in (2-1-2) from — co to 0 instead of 0 to co.
Equivalently, we may simply reverse the sign of the (n+-£)th row and column of L;;, and
hence the kth row and column of (#;) and of (v;;).

Hence to find W(+, —, +, ..., (—)*!), in which each alternate zero-crossing is a down-
crossing, we have to multiply L,; ,,; by (—1)i*/ and hence also multiply x; and »;; by

—1)i+i
(=0 2:2. Thecasesn =1, 2 and 3
The case n = 1 is trivial, tor then Z (g, v) is the normal distribution for a single variate and

_%gz
5= [ e

69-2
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Since in (2-1-8) ¥, vanishes we have g, = —¢7; = — ¢ and so from (2-1-13)
3 1 /—y™\?
W(+ =("Ll) J, :—( 0) 2:2:1
( ) onD 1 o ¢.O ( )

as is well known (Kac 1943).
Also well known is the case n = 2, when

1
Jy= on [(1—11%2)’5‘—}—1/12(:05“1 (—r19)]

(the angle being chosen so as to lie between 0 and 7). This gives

3
W(+, _ (H11t09) 1—p2.)} -1(__ 2.9.9

(+ +) 4,”2(%(2)_‘1&_%2)% [( ?12) +V12 COs ( VIZ)] ( )
(Rice 1945, §3:10). By changing the sign of v, we have

W%H=E%£%yWWW%MWWM- (2:2:3)

Not so well known is the case n = 3. However, J; may be derived from some integrals
calculated quite recently by Nabeya (1952) and Kamat (1953). One obtains

1
Jy = (2-;)—%”(":1) [+ (5101 05+ 535)],

where 5, = cos™1—Y31V12 " Vas

(1—=v8)% (1 =3y’
(89, 53, €tc., are obtained by cyclic permutation of the v;). These angles are also to be taken
in the range (0,7). So from (2-1-13) we find

0y == V31 Vig+Vag.

3 1
Wi+, +,+) = (ﬁ% [[(w) |2+ (syy + 5,00+ 5303)],

W, = ) = bl ) 4 (s ) oy byt (s-magl,) (224)

-3
W(i+,—,—)= %’ [I(Vij)|%+51“1+(52“”) oy + (53— ) “3]-1

2:3. General values of n
When z > 3, the integral J, cannot be expressed in terms of known functlons in general.
However, two particular cases in which this is possible may be stated here for later use.

First, if the covariances v; all vanish when ¢ = j, then{,, ..., {, arestatistically independent
variates and o cz

_U 5(2 ) ] (2m )%n
giving W = (2:1)" (/‘11 :l‘)'%lunn)- . (2.3.1)

Secondly, if all the covariances v;; are unity, then {}, ..., {, all reduce to the same Gaussian
variate, giving ot 2
(2m )* ~(2n )% 2.

Hence W = 1 ( )y (:ull ﬂnn)%
: 277%("+1) 2 ) D? )

(2-3-2)
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3. ASYMPTOTIC EXPANSIONS NEAR THE ORIGIN: {/ REGULAR

In this section we evaluate the probabilities defined earlier, for small time intervals 7.
It will be assumed that the covariance function () is regular at the origin

"

¥(t) = ¢0+-2—!°t2+% ARSI
(coefficients of the odd powers vanish, since ¥ (¢) is an even function of (¢).

3-1. Expansion of W(S)

Our first object is to obtain a multiple power series in the ¢ for the probability density
W(S). Since W depends only on the covariance matrix (4;;) of equation (2-1-3), it is evi-
dently a function of the time differences (£,—¢;). We shall see that the leading terms in W
are homogeneous and of degree 3n(n—1) in the (£,—¢;).

We use the following lemma: if F(x) is any function of x regular at x = 0, then the leading
term in the expansion of

F(xy+y,) ... Flxt+y,)
F(xn+yl) oo F(xn+yn)
in powers of the x; and y; is
| F(0) F'(0) ... F@1(Q) |
F'(0) F"(0) .. F®(0) E(xf—xz-) (¥;—)
S i

: : : rer... (n—1)12"
Fo-v(0) F&(0) ... Fen2(0) |

To prove this, first express each term as a Taylor series in the x;
: X o
Flt9) = Flyy) +-5,F (g) 2 F'(3) + ...

Subtract the first row of the determinant from the remaining rows, taking out the factors
(x5—%,), ... (x,—%,); then subtract the second row from the rows beneath it, taking out the
factors (¥3—x,), ..., (¥,— %) ; and so on. In the result write

2
FO(y;) = FO(0) -5, F+1(0) + L F&+2(0) + ...

and proceed similarly with the columns. This gives the result.
Setting F' = ¢, x; = ¢, and y; = —¢; in the lemma we find, from (2-1-9),

()2
D~D g(] ) (3-1-1)
n[112!... (n—1)1]2 :

vo Yo ... ygP

/ 4 (m)
where D, = (—1)nm- ’f" R V’f’ (3-1-2)

Yo W gD |
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It will be noticed that since the odd derivatives of ¢ all vanish, every alternate element of
D,, is zero, so that D,, may be factorized into two determinants
” iv

Yo 0 0 0

Dy = (=)0 g gt )
| : | o : ,

By a similar method we may evaluate the leading term in g, (equation (2-1-8)). One finds

in fact D, 1;[ (t,—1) 1;[ (t,—¢;)
~ n+1 t=fr JFS 5 M B
o~ s (3-1-3)
Hence Vrs = o~
T ()

according as x4, is positive or negative. Now since (¢;;) is a positive-definite matrix its
determinant D must be positive, so that by (3-1-1) D,, is positive also. On the other hand
when #, <, < ... <t, the product ] (¢,—¢) has the same sign as (—1)"*, and so g, has
i*r
the same sign as (—1)7**. It follows that
Ves ~ (— I)Hsf

Now to calculate W(+, —, +, ..., (—)*7!) we recall that v,, was to be multiplied by
(—1)*s. The elements of the corresponding covariance matrix thus all become equal to
unity, in the limit, and so (2-3-2) applies. On substituting for 4; and D we find

Wi+, —, 4+, .., (=) ~ Cng(tj—t,.), (3:1-4)

where n= 1'2277'5(“1()7(2;)}1)' (ngl)' (ggi})% (3-1-5)
In particular when n = 1 and 2 we have the known results

w(+) :—Ql;%% (3-1-6)

and W(t,—) ~ ﬁg—% (t,—2) (3-1-7)

(cf. Rice 1945, §3-4).
3:2. Evaluation of P, (1)

The integral I, defined by (1-4-6) can now be evaluated. We use the identity

= Cuesl (=112, N
f"'fo<,,<t2<_..<tn<rH("' e TET I s A )

i<j

a proof of which is given, for example, by Mehta (1960). From (1:4-6) and (3:1-4) we have

then
(112130 (D12, o N
L~ 13tsr. (@ &7 (3:22)
which is of order 727+D, From this it follows that
X 1 " O(T%n(n+l)—2). (3.2.3)

o
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Since the power of 7 increases with 7, one sees that P,,(7) is given asymptotically by the first
term in the series (1-2-11), i

} Pm(T) ~ Xm+2' (3.2'4)
From the last three equations and (3-1:5) we have
[112138!... (m+1)!]? Coriy 4* jininimes) .95
Br) ~ Ni3i51. (2mi8) ! C, an (3-2:5)
In particular 02 1 DiD,
Fy(1) ~ Cl =3 Dz i1,

3:2:6
Cyrt 1 DiD} ( )

AN ~c'% 648nD%D27

in agreement with Rice (1945) and Palmer (1956), respectively. In general we have
} P,,,(T) _ O(Té(m+2)(m+3)—2), (3_2_7)

a power of 7 that increases very rapidly with m.

3-3. Ewvaluation of p(n, 1)
When 7 = 0 and 1 we have trivially
| p(0,7) ~ 1 (3-31)

3
and p(1,7) ~ 2W(+)r = L D%, (3-3-2)

m D,
from (3-1:6).

When 7 > 2, both I, and I vanish at 7 = 0, and therefore (1-4-5) is valid provided both
p(n,0) and p’(n, 0) are zero. Both conditions are satisfied if we assume p(n, 7) = O(71*¢),where
¢ > 0. In the series (1-4-7) the terms 7, (1) are proportional to increasing powers of 7 and
hence p(n,7) is given asymptotically by the first term
p(n,7) ~ 21, | (3-3-3)
or on substitution from (3-2-2) '

1213l (n—1)!
p(m7) N2[1!3!5! , ((Qn-«i)] C, it (n>2). (3:3-4)

For example

1 D
1 — 3 3
PRI oY’ (3-35)
1 D?
6 . __ —
£(8,7) ~ 5Cy1® = 19440m D2

Since p(2,7) is of order 73 and not 72 we see that nelghbourmg zeros of /() are not indepen-
dent of one another. The effect may be called a ‘mutual repulsion’ of the zeros. It is con-
nected with the property, seen in the previous section, that Fy(7) - 0 as 7— 0, that is to say,
small intervals 7 are unlikely.

Moreover, as n increases, so the power of 7 in p(n, 7) increases very rapidly.

A heuristic argument for the rapidly increasing power of 7 may be given as follows. If
f(#) is to have n zeros in (f,t+7) then by Rolle’s theorem f’(¢) must have at least (n—1)
zeros in the same interval, and further f”(¢) must have at least (n—2) zeros, and so on, till
finally /®=D(¢) must have at least one zero in the interval. Therefore (assuming the existence
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of /™) f@=Dmust be of order 7 throughout the interval, and by integration f®=2, f&=3_
f must be of order 72,73, ..., 7%, respectively. That is to say, f@~D, f&=2_ __ f at some fixed
point in the interval, must lic within ranges 9f®~Y, §f®=2, ..., §f of order 7,72, ..., 7", respec-
tively. The probability of such an event is of order

(gf(n—l) (gf(n‘—z) t?f 0(11-0-2+...+n) - O(T%n(lwl))'

4. ASYMPTOTIC EXPANSIONS NEAR THE ORIGIN: A SINGULAR CASE

We shall now scek expansions at the origin in a very interesting singular case. Instead of
the Taylorseriesfor i (¢) (equation (3-1)), suppose now that ¢ (¢) has an expansion of the form
V() = dot 520 r S s (¢1)
In other words, the third derivative of ¥ (¢) possesses a finite discontinuity at the origin.
Some examples of such functions were studied experimentally by Favreau et al. (1956),
and McFadden (1958) has considered them theoretically. They occur whencever the

spectral density of /(¢) is of order (frequency)~* at high frequencies.

4-1. Expansion of W(S)

If the procedurc of §3-1 is attempted it is found that altogether fewer factors can be
cxtracted from the determinants. For example, to evaluate D, defined by (2-1-9), we begin
by subtracting row (n— 1) from row 7 of the determinant, then row (z-—2) from row (n—1),
and so on, in turn extracting the factors (¢,—¢,_,), (¢,-1—£t,_2)s .-+, (£—£,) ; and similarly
for the columns. The process is then repeated as far as row 2 only, and without extracting
any factors. The leading term in the determinant is then seen to be

D~ oo (175 1,02 |A] (> 2), (4-1-1)

where we have written or = ¢, bo—t="1, (4-1-2)

and where A is the (n—2) X (n—2) square matrix

4(7,+7,) 27, 0 0
27, 4(7,+74) 274 0
A 0 274 4(13+71,) ... 0 . (4-1-3)
0 0 0 ceo 41,7, )

When 7 = 2, |A| is replaced by unity in equation (4-1-1).
Instead of calculating (g,,) directly, it is rather more convenient to determine first

(Ly4i,+j)- Now (L) is the reciprocal of the covariance matrix (1), given by (2-1-3). The
determinant of (4;) is found, by a process similar to the above, to be
A~ —oioc® (17,0 7,1 |E|, (4-1-4)
wherc E denotes the (27 —2) x (2n—2) square matrix madc up as follows:
A C
B (e B)

t The existence of f”(¢) is sufficient to ensure the joint distribution of f(¢) and f”(¢) asin §2. If the expansion
of r(¢) contains a term in [¢] then the mean density of zeros no longer exists in the usual sense. Such a case
was considered by Siegert (1951). Sec also Rice (1958, §9).
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in which A is given by (4:1-3), B is the n X n matrix

0

B = : 0

0

0 0 0 0 47,
and C'is the (r—2) X n matrix

—2r i4r 21, 0 .. 0 0 0
0 : 0 47, 27, ... O 0 0
C— 0 0 0 4r; ... 0 0 0
0 0 0 0 .. 41, 2r,, O
0O 0 0 0 .. 0 4r,_, 21,

(CG* denotes the transpose of C). By subtracting the (n—1+z)th row of E from the ¢th row
(i=1,2,...,(n—2)), and similarly for the columns we find

|E| = 127,75 ...7,_,)?
and 50 A~ 1257 (— o) 2y 7y 7, ) (41:5)

The quantities AL,,; ,,; involve the cofactors of the last » rows and columns of (;)
and hence of E. Hence we find

ul %‘ul 0 Y O O
Tu; (u;+u,) Su, 0 0
1 0 Lu (y+ug) ... 0 0
(Ln+i,n+j) N% . 2. ? ? . 3 . . s (4'1'6)
0 0 0 (un—-2+un—-l) %un—l
0 0 0 tu,_, Uy
1 1
where U = P (4-1-7)

4-2. Thecasesn =1, 2 and 3

In the special case n = 1 the above expansions do not apply, but the well-known result

W) = g (S5 (+21)

is easily derived as in § 2.
When 7 = 2 we have

1 fu;, Lu
(Ln+i,n+j) Ngg( PR 1)

Uy U
. . 4:Tl - 271
and so by inversion (5) ~ ¢ (_271 471)

70 VoL. 254. A.
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giving v, ~ —§ = cos™! (7). Thus from (2-2-2) and (2-2-3)

W+, +) ~ 1 (i?:hﬂ) <

2\2 6] (—y )’
AL 2
1//3 7 ¢
Wi+, =) ~ (G +3) o
’ m\2 3/ (—yoyp)?
L[ M $u, 0
When 7 = 3 we have (Lysi nej) ~ = L, (ug4uy)  du,
0 Lu, U
. 7,(37y+47,) —21,7, T4 To
and so (1) ~ P — 27,7, 47,7, — 27,7,y
1772 9
1T, 7.7y (47,437, 7,

Thus Voay Var, V —_(_ ..TZ__)13 ( T\ T )?z* B - )%
u 2273012 ™ gy g, ) > \(87,+47,) (47, +37,)) ° (4T1+3’r2 .

Writing for short - :T = ;2 — il = x,
11Ty 30
4:2:3
T2 *ts—tz_y ( )
THTy,  f—t
so that x4y = 1, we find from (2-2-4)
1 ¢ 1
— () .9
h MO i a ey
(4—x) 2 (4—y)t 2/
_ 1 —xE 3 3
b= B o () G |
Q 3+ @t 3 +m(xy)® + @t ) (4-2-5)
Coy g (520t v B2yt (g
Q(+’ ’ )‘S—M(Z-:x)% cos (E)ﬁﬂ(xy) +WCOS 1( 5 )

These three functions are plotted in figure 1. Q-+ " and Q> are symmetrical about
the mid-point x = }, as would be expected, whereas Q*> > 7) is asymmetrical.

The probability density of a down-crossing at #, given up-crossings at ¢, and Z is pro-
portional to @ ~»%). Figure 1 then shows that the probability density is a maximum
when ¢, is mid-way between the two ends of the interval. On the other hand the curve for
Q¢+ shows that given up-crossings at both ¢, and /#; the probability density of an up-
crossing at an intermediate point 7, is fairly insensitive to the position of ,. At the mid-point,
the density is actually a minimum.

4-3. General values of n
Exact expressions do not appear to exist in general, but upper and lower bounds for
W(S) may be obtained in the following way.
In equation (2-1-6) write

7 = i , lz": ij - (4.3.1)
’ L;;)*

73
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Ficure 1. Graphs of Q ¢+, Q=+ and Q¢+ =,

o 1 d(1) o
This gives W(i+,+, ..., +) = @n) A InLyy oo Ly (4-3-2)
where d(1) :fm...fwacl;’cz...xnexp[—l i lijxixj]. (4-3-3)

0 0 2;=
Using the asymptotic formulae for A and L;; (equations (4:1-4) and (4:1-6)) we have
1 3n ¢ d(1)
W(+, 4, ey +) ~ ; _ 4-3-4
(5 oo ) o 1000 (g () (2 79) - g Fras) 0
3
and 1 1( o —) 0 . 0
2 \uy +uy
) s ta) ) o
2 \u, +u, 2 \u;+uy) \ug+ug o
(L;) = o l( 4 )%( u )% . P (4-3-5)
2 \u;+uy/ \uy+usg
0 0 0 1

70-2
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It is now easy to find bounds for ®. For since #; > 0, all the elements of (/;) adjacent to the
diagonal lie between 0 and }. Therefore, the x; being non-negative,
27 < 2 lyngxy < ZaPE 2 Ay (4-3-6)
i iJ i

In the right-hand inequality substitute

%% < §(xF +x7)

ij i

giving 2aF < 2 lixx; <2347
i, j i

Thus from (4-3-3) 1>0>1/2n, (4-3-7)

These bounds may now be substituted in (4-3-4).
For W(S), when the signs of § are not all 4-, one or more of the /; may be reversed in
sign. Hence the left-hand inequality in (4.3.6) is not valid but may be replaced by

2
2 % — E Xi%Xip) S Z_xile'
. il l 2]
Now it can be shown that
2
A Zx? < 24 ’“inxiﬂa
1 ?

i

where A is the smallest root of the equation

(1-1) -3 0 0
-3 (1= -3 .. 0
0 —~3 1= .. o |=o,
0 0 0 ... (1=A)
that is to say A = 2sin®{m/2(n+1)}.

Since, then, in all possible cases
A2 a7 < 3 lwx; <23 42
i i i
1

we have 2rsin? {m/2(n+1)}

1
> 0> (4-3-6)

Our general result then is that

1 /3\in ¢ 2./30
w(s) ~ (2m)" (:1‘) (— o)t (t—1) (L4—1ty) ... (8,—1,0)°

where @ is a function of the ¢ lying between the bounds (4.3.6).

(4+3-7)

4-4. Asymptotic behaviour of P, (1)
By the mean-value theorem for integrals, the integral X, of (1-4-4) can be expressed as

1 3\l ¢ ,
X, ~ (2m)n-1 (Z) _ 82~/3®Km (4-41)

dt,...dt
here K, = ff 2 n-l 4-4-2
v h<tr<..<ty (B3 t1) (E4—1) .. (B, —t,_s) ( )
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and @’ is some value of ® within the bounds (4-3-6). It can be shown that K, is finite, and
since the denominator of the integrand is homogeneous and of degree (n—2), K, is in-
dependent of (¢,—¢,), or 7. In fact whenn = 2,3,4,5, ...

K,=1,1,in%1n?, ... (44-3)

Thus, as 7 — 0, X, tends asymptotically to a positive value independent of 7. From the
expansion (1-2-11) it now appears that, for each value of m, P,(7) tends asymptotically to
a limiting value P,(0).

This behaviour of P,(7) is in marked contrast to the corresponding behaviour when ¥ (¢)
is a regular function. Then, as was seen in §3-2, P, (7) is proportional to an increasing
power of 7 as m increases. A further discussion will be given in connexion with p(n,7) (see
§4-8). Meanwhile, however, we shall establish some close inequalities for £,(0) when
m=1,2.

4-5. Approximations to P, (0)

From the results of §4-2 we may evaluate X(§) explicitly when z = 2 and 3. Thus from
(4-2-1) and (4-2-2) we have /3 2
¥, =)~ (345

(4-51)
n ﬁ_;{)
X(+,+) ~ (£ =3)a
where we have written for short o = ——; = 0;,,. (4-5-2)
—Vo —Y0
Further, on integrating the expressions (4-2-4) with respect to £, over ¢, < ¢, < #3 we find
3 2 47
X(+> ) +) ~ (8—77—2+J3ﬂ*ﬁ) &,
3 1 17
X(+, =, —) ~ (W+Q~«/—3;_%§) a, (4:53)
3 1 49
X( 45 4) ~ (g 5 288)
The identity X(+, —, +) —X(+, +, +) = X(+, +) can be readily verified.
Equations (1-2-1) and (1-2-2) give, in the limit when 7 — 0
Py=1-217996a— (P,+ P+ Fs+...),] (4-5-4)
P, = 0-217996a— (P;+ P+ P,+...) }
and P, = 0-070 8560 — (2P, + 3F;+4F;+ ...),} (4:55)
P, = 0-024 358z — (2P, 3P, +4P,+...)
whence also P, = 1-147 139a+(P4+2P6+3P8+.'..),} (45:6)
P, = 0193 638+ (P;+2P,+3F+...).]
Hence the inequalities 1-147a < Py(0) < 1-218a, (457
0-193a < P,(0) < 0-218, )
and 0 < P,(0) < 0:071«,
2(0) l (4-5-8)

0 < P,(0) < 0-025c. |
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4-6. Dusproof of the ‘exponential hypothesis’
We now apply the inequalities of the previous section to a particular case which was
studied experimentally by Favreau et al. (1956). This is the Gaussian process f(f) whose

spectral density is given by E ot 1/(1+0?)?2 (4-6:1)

the form Iﬁ(t) oc (1+lt|) e—-m — l*%ﬁ—l—%’tl?’*“--.

and so is of the form (4-1).

The experimental results showed that the distribution of zero-crossing intervals Fy(7)
was quite close to a negative exponential. Since the mean of the distribution must be

S .

2W(+) w\—¥yq m
the only possible exponential law is
Bo(7) = (1fm) e=7/"
which makes Fy(0) = 1/m, or, since
w= i)~ 0¥ =}
in this case, Py(0) = Bajm = 0955 ... a. (4-6-2)

>

McFadden (1956) doubted the conjecture but was unable to disprove it (McFadden’s
assumption that p”(n,7) = 0 when n > 4 is actually incorrect), since the only inequalities
then available to him were the right-hand inequalities of (4:5-7). However, the lefi-hand

inequality 11470 < Py(0)

is definitely contradictory to (4-6-2). Thus the exponential hypothesis is disproved.

It may be pointed out that because of certain limitations in the experiments (indicated
by Favreau et al.), the value of Py(7) is liable to be underestimated at the small values of 7;
so that it is not surprising that the experiments suggested a too low value of F(0).

4-7. Further estimates of P, (0)

If P, P, ... are neglected in equations (4-5:5) and (4-5-6), the resulting estimates of
P,, P,, P, and P, show that P,/P, and P;/P, are about equal to 1/3. Now in §1-1 it wasshown
that P, (7) tended to zero with m more rapidly than any negative power of m. Itis consistent
with this result to conjecture that the ratio P, /P, tends to a constant value. If we take

roughly P,(0) = 1P,(0) = 0-0062,
P,(0) = 1P,(0) = 0-002a, (4+7-1)
F,(0) = 1P;(0) = 0-001c, '
then on substituting in equations (4-5-5) and (4-5-6) we find as possibly closer approxi-
mations Py(0) = 1-1550,
P;(0) = 0-196a,
Py(0) = 0-055¢,
Py(0) = 0-017a.)

(47-2)
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4-8. Asymptotic behaviour of p(n, )

Asin §3-3 we have 5(0,7) ~1, p(1,7) N%(_%g) - (4-8-1)

When 7 > 2 we have from (1-4-1) by integration
plnyr) = [ar [ o 2W(+) B — 2B (1) + Pucals”)]
0 0

provided that p(n, 0) and p’(n, 0) are both zero. This will be satisfied provided
p(n,7) = O(1'%¢), where > 0.

Now we have seen earlier that in the singular case P,(7) tends to a positive value P,,(0)
as 7 — 0. Hence by integration
p(n,7) ~ W(+) [£,(0) —2F,,(0) +F,_5(0)] 7 (4-8-2)
as 7> 0.
From (4-5-8) and (4-5-9) we have the strict inequalities

0-711512 < p(2,7) < 0'903/5’72,1

(4-8-3)
0-051472 < p(3,7) < 0-243472,
_ L | 8
where /)’~W(~l—)oc~12ﬂ(_ et (4-8-4)
The rough estimates (4-7-2) would yield

2,7) = 0-8184r2,

p(2,7) pr e
p(8,7) = 0-103472

Equation (4-8-2) shows that, in contrast to the regular case, p(n,7) is of order 72 for all
values of n greater than or equal to 2; there is no longer a strong mutual repulsion of the
ZEros.

Again, a heuristic argument suggests that this result is not unreasonable. Since ¢; has
no continuous derivative at the origin, the second derivative of fis, in this case, non-existent
almost everywhere (cf. Bartlett 1955, chapter 5) and the first derivative f'(¢) may be ex-
pected to behave like a random-walk process in which the standard deviation of

L") =/ (%,)]
increases like |¢, —#,|* for small time-differences. Now in the fixed interval (0,7), if f has
two or more zeros, /* has at least one. So f” is of order 7% in the interval while f, by integra-
tion, is of order 7%. That is to say f and f” lie within intervals §f and Jf" of order ¢ and 7%,
respectively. Since the joint probability density of f and f’ at some fixed point # in the
interval exists by hypothesis it follows that p(x, 7) is of order

OF.0f = O(r¥rd) = O(72).

One consequence of (4-8-2) is that, given the existence of two zeros in the interval
(0,7), the probability of (n—2) further zeros in the same interval is of order 72/72 = 1.
Roughly speaking, we may say that the first two zeros serve to ‘pin down’ the function
fand its derivative so that the probability of any further number of zeros in the interval is


http://rsta.royalsocietypublishing.org/

s |
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

580 M. S. LONGUET-HIGGINS

finite, no matter how short the interval is. However, the probability density of, say, a third
zero lying somewhere between the first two depends upon the situation of the third zero
relative to the first two, as was seen from the curves of figure 1.

5. A COMPARISON OF DIFFERENT APPROXIMATIONS TO P (7)

In the following we shall compare the accuracy of the approximations suggested by
Rice (1945), McFadden (1956, 1958), Ehrenfeld ef al. (1958), and Longuet-Higgins (1958;
this paper is referred to as (I)), with the approximations suggested in the present paper.
Discussion is purposely restricted to those methods of approximation on the basis of which
numerical computation has been, or readily could be, carried out.

Two different aspects of the approximations are first considered: (a) their accuracy for
small values of 7, both in the regular and singular case of §§ 3 and 4, and (4) their accuracy
for large values of 7. The results are tabulated in table 1.

Then the ‘narrow spectrum’ approximation is considered in § 5-8, and lastly the approxi-
mations are compared numerically with experimental results obtained by analogue methods
when the spectrum of f(#) has certain ideal forms.

5-1. Rice’s approximation (1945)
This has been used as a starting point for several of the later approximations. It is

in our notation. The right-hand side, being the first term in the series (1-2-7) may also be
written as P{P’, where P§¥ is the sum of N terms. As we have seen, the calculationof W(+, —)
involves the evaluation of a bivariate normal integral.

From equation (1-1-1) the error in P{" is equal to
P,+P+F+..., (51-2)

which is always positive. Thus P{ always exceeds F,.
(a) Small values of 7. In the regular case the highest term in the remainder is

Py ~ 555(C4/Cy) 72 (5:1-3)
Thus P{V is correct to order 77 near the origin. In the singular case equations (4-7-1) and
(47-2) give P+ P+ Pyt ... = 0-0620, (5:1-4)

an error of about 5%,.
(b) Large values of 7. When 7 is so large that f(#) and f(¢+-7) are uncorrelated then we have
Wi+, —)
P(l): — LA A W —_— = W . 5'1'5
P,, on the other hand, must tend to zero, in order that [Py() d shall converge. Thus (5+1-5)
represents also the error in PP.
5:2. The approximation P

The approximation discussed in the present paper, namely
WEE ) [ W =)

7 JL LA R DA "0 T Aty = X (4, —) =X (4, —, =), (521

0 W( +) h<ta<ts W(+) 2 ( ) ( ) ( )
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appears as a natural second approximation to F,. Its evaluation involves the single integra-
tion of W(+, —, —)/W(+), which, as we have seen in § 2-2, is expressible in terms of known
functions. Higher approximations

P = X2,1“X3,1+X4,1—-~ (“‘)NHXNH,I

will each involve additional integrations, in general.
Equation (1-2-4) shows that the error in P is equal to

— (P, +2P,+3P,+...) (5:2-2)

which is always negative. Thus P{ is always a lower bound for F,.
(a) Small values of 7. In the regular case the highest term in the remainder is

8 CS 19 Do

Thus P is correct to order 718 near the origin. In the singular case equations (4-7-1) give
—(Py+2Pg+...) = —0-008, (5-2+4)
an error of 0-7 %,.
It is clear that near the origin this approximation leaves little to be desired.
(b) Large values of . Asymptotically we have

Wi+, —,—)
s T ~W 2
and hence PP ~ —W(+)%7 (5-2-5)

whichis O(7) atinfinity. Itis clear that the approximation fails radically for large values of 7.

Indeed it will be seen generally that the approximation of Py by P is analogous, for large
7, to the approximation of e~* by a finite number of terms of its power series ; the convergence
of the approximation is non-uniform over (0, c0).

5:3. The ‘multiply conditioned’ approximations

In §3-10 of his original paper (1945) Rice suggested that the approximation (5-1-1)
might be improved by including in the probability density W(4-, —) the condition that
f(#) be positive at one or more given points of the range (¢, %,). The inclusion of just one
extra point leads to a threefold normal integral that can be expressed in closed form. The
inclusion of more than one point leads to fourfold and higher integrals.

The suggestion was taken up by Ehrenfeld ez al. (1958), who refer to such approximations
as ‘multiply conditioned’ approximations. Thus (5-1-1) is denoted by MC-0; with one
condition at the mid-point of the range the approximation is MC-1, and so on. Clearly all
such approximations are, like MC-0, upper bounds for the true value F,.

(a) Small values of 7. The error in MC-1 is just equal to the probability density of a down-
crossing at ¢ = 7 plus a zero in (0,7), given that f(0) = 0 and f(37) > 0. Now if f(}7) > 0,
there must be at least two zeros in the interval (0, 7) and/or at least two zeros in (47,7).
If we ignore p(5,7), p(6,7), etc., relative to p(4,7), the error is clearly

W+, —+,—)
2 > ) di, di.. 31
ff0<tz<t3<ér W( _,ﬂ) PASIA] (53 )

71 VoL. 254. A.
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582 M. S. LONGUET-HIGGINS
In the regular case, the neglect of p(5, 7), etc., is justified by § 3-8, and we have from (3-1-4)
W("_, ) +: "—) ~ g

W(+) C, bylsT(ts—1y) (T—1,) (T—1y).
Substituting in (5-3-1) we find for the error
39C, 4 o
gT —C,‘;T . (5 3 2)

This may be compared with (5:1-3). Clearly the order of the error is the same as in MC-0,
but is less by the ratio 39x280 13

8l 48’
In the singular case the limiting value of MC-1 as 7 — 0 was calculated by Rice (1958)
in the case of the spectrum (14-¢2)~2 (cf. §4-6 above), with the result

MC-1 ~ 1%51 = 1-1950,

since o = 1/3 in this case. From (4-7-2) the error appears to be
1-19500— 11550 = 0:040c (53-2)

or about 3 %, of F;(0). Compared with MC-0, the error is reduce by about one-third.
In the case of the higher multiply-conditioned solutions, if the subintervals of (0,7) are
denoted by (#9, #¢+1) (with #) = 0) then the expression corresponding to (5:3:1) is

W(+9 ) +, —)
;J‘ft(i)<tz<ts<t(i+l) W( +) dtz dt3'

Since W is of order 78 it follows that the error is always of order 78.
(b) Large values of . When the interval 7 is sufficiently large, the sign of f{}7) becomes
independent of the other conditions, and the probability of /(47) being positive is one-half.

Hence MC-1 ~ $MC-0 ~ LW/(+). (53-3)

Thus the error is reduced relative to MC-0 by one-half.
Generally, if the N ‘conditioned’ points in the multiply conditioned approximation
MC-N are spaced so that their separation tends to infinity with 7, then

1 1
MC-N ~ 55 MC-0 ~ o W(+). (5-3-4)

5-4. McFadden’s first approximation
McFadden (1956) gave the following approximation to Py(7), valid for small intervals 7

B(0) + iy = Fr

say. Here R"(r) denotes the correlation function of the ‘clipped’ form of f{#), defined in
§1:4. From (1-4-8),

F(r) = B—Pi+ By Pyt ... = X(+, =)= X(+, +). (54:1)
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The approximation is equivalent to neglecting P, P,, ... in the above series; thus it is
actually of a lower order of accuracy than P{.
In the Gaussian case we have the well-known formula

R(r) = 2 gin-1 (%;i))

m 0/,
and so ;
_ (Vo VA (=Y »
F(T)—2(_ Z) 3,208 ( /e ) (54-2)
(a) Small values of 7. In the regular case the error is of order
10,

and in the singular case we find by expansion in powers of 7
E(1) ~ —90,/6¢ = a.
By comparison with (4-7-2) the error is
—0-155u. (5+4-4)

(b) Large values of 7. In (5-4-1) each of the terms X(4-, —), X(+, +) tends to 0, and so
F(r) tends to 0. The error thus vanishes.

5:5. p,(r) and p(r)

The sequence of approximations proposed in (I) depends on writing the first of equations

(1-4+1) in the form 1 2
B =~ wiy st U(t,—t),
1 d?
or PO(T) :Wmd_TzU(T),

where U(7), = }p(0, 1), is the probability that f(#) be positive throughout the interval (0, 7).
Let U(7) bereplaced by the probability U, (£Y, ..., #7) that f(#) be positive at r suitably spaced
points in (0, 7). (For convenience it is supposed that the points are equally spaced and that
(D, #) are at the end-points.) As the number 7 of points is increased, U, becomes an in-
creasingly good approximation to U. The corresponding approximations to Fy(r) are

defined by ] P
p(1) = W) 300 U (1D, ..., t0) (5°51)

% 1 d?
and pi(r) = W(:——) P U,.(1). (5°5°2)

It turns out that in the Gaussian case p4(7) is identical with F(7) given by equation (5-4-2).
Generally, although U, involves an r-fold normal integral, the approximations p, and p,
which depend on the derivatives of U,, involve only (r—2)-fold normal integrals. Thus ps,
D4 s and p¥, p¥, p¥ can all be evaluated in terms of elementary functions.

(a) Smallvalues of 7. The difference (U, — U) is equal to the probability that f{¢) be positive

at each of the points £, and have a zero-crossing at some point in the interval (0, 7). Hence
71-2
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f(f) must have two, four or more zeros in at least one of the subintervals (¢?, #*V) (the first

such zero a down-crossing) and certainly not one, three of five zeros in any of the
remaining subintervals. If we neglect p(4,7) relative to p(2,7) and p(8,7) the probability
of such an event for the subinterval (¢, #¢+D) is

If W(—,+)dnds—[ [ W(-t, —, +) dtydtydt,
1D <gy<tg<gli+D D <t <fg; D <tg <tz <gli+D

| Mfff ' W(_, +, _) dtl dtzdt3° (5-5.3)
PG <Up <L+ 155 <tz <f®

Again, if p(4,7) is neglected the probability of a pair of zeros in more than one of the sub-
intervals is negligible, so that the events are mutually independent. So (U, U) is equal to
the sum of (r—1) expressions like (5-5-3).

On differentiating (5-5-3) partially with respect to both ¥ and #” the first integral
vanishes identially whenever r > 2; the other integrals also vanish except when ¢ = 1 or
(r—1). Hence we have

2 02
D7) —Fy(7) ~ W(+) Wffft(l)<t1<t2;t<'“1)<t2<t3<t(f> W(+, —, +) dt, dt,dt,.

Substituting for W(+, —, +) from (3-1-4) we find

D(1) —Py(r) = —H(Cy/Cy) (10— K0) (#0—£0-) (#0)4-240-) - 340).
Now putting (#©—¢D) = 7 and (¢®—¢-V) = 7/(r—1) we obtain for the error in p,
(3r—5) Cs _,

3(r—1)3C, .

Thus p,(1) is correct to order 73 (not 74, as was stated in (I)). In particular whenr = 3, 4, 5
the errors are, respectively,

(5°5-4)

—-66;7', Hﬁ‘é}T, *%’Cﬁ;’l’. (555)

The case r = 3 is in agreement with (5-4-3).
On the other hand p} involves the first term in (5-5-3) which is of a lower order. Thus

U—U-— (r—l)” W(+, —) dtydts+O(r4).
0<lp<t3<7/(r-1)

On substituting in (5-5-2) and using (3-2-4) we find

1 T
PO ~B(r) = 25 Po () + 0.

Therefore at 7 =0 pF = (1 +;_il—) Fy=o,

dp¥ 1 \dP,

?F""(L+@*1V)HF’

G (14 L) R |

dr? (r—1)3) dr?’

i 1\ &R

ar = (H(r_])‘*)T )



http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

INTERVALS BETWEEN ZEROS OF A RANDOM FUNCTION 585

For example, when r = 3 we have

’ﬁ

0

dps _ 5dF
dr

5
dr 4

a relation proved independently in (I). For r > 3, since Py(1) ~ (C,/C)) 1, the error in

rela
PE() is .

=1 a’f (55-6)

In the singular case we make a straightforward expansion of p,(7) in powers of 7. The
calculations lead eventually to the following, when r = 3,4, 5

£5(0) = a,
$4(0) = :T[COS"I( 7)+3j15:| = 1-0583«,
$5(0) :—[{20 s‘l( 1;1)—c s“1(7)}+ {\/23%-11\/2}]

= 1-0879«.

The corresponding expansions of p¥(7) lead to

£5(0) = 1-50,

) = ol cos™t () #2007 () oo (55) +90os (F1)]
= 1-3551a,

200) — % -1 -1 i -1 -1 _11)
1p¥(0) 16”[(cos 672 +cos 3J —l—cos 7 Tcos 2~/6)+16cos (12

— -1 */ -1 -1 . -1 3
2(cos 4J2+cos )+4(cos 4\/2 cos 8J3)

7 7
—1_____ 1) -1 1 -14
—i—8(cos 2J2 Ccos 9) +9(cos 4J3+COS —-cos 8)]
= 1-2899q.

These results are plotted in figure 2 against the abscissa 1/(r —1), and taking « = 1. The point
labelled P§™ and plotted at 7 = oo corresponds to the estimate Py = 1-155a of § 4-7. Tt will
be seen that p,. and p¥ both approach P, the one from below and the other from above.

For comparison, the other approximations to £, (0) discussed above have been plotted
in the same diagram. Because they are of comparable complexity, MC-0 and MC-1 have
been plotted on the same ordinates as p, and p;, respectively. P§?, which involves the single
integration of a known function (corresponding to a fourfold 1ntegrat10n) is plotted level
with 7 = 6. It is obviously the closest approximation.

(b) Large values of 7. As 7 — o0 so U,(7) tends to zero; for the probability that f(¢) remain
of constant sign throughout the infinite interval becomes vanishingly small. Hence also
p, and p¥ tend to zero at infinity, and the error in both p, and p¥* is vanishingly small.
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Ficure 2. Approximations to P;(0) in the singular case.

5:6. McFadden’s second approximation
A quite different method was suggested in a later paper by McFadden (1958). On the
assumption that a given interval 7 is independent of the sums of the previous (2m+2)
intervals (m = 0, 1,2, ...) McFadden derived the integral equation

Fo(r) = X(+, =) —X(+, +) % By(7). (5-6-1)
X(+, —) and X(+, +) are asin § 1-1 and a star % denotes convolution:

Fy(r) % Fy(r) = f 0 F\(r') Fy(r—1') dr".

The solution of this (approximate) integral equation may be denoted by McF (7).
(a) Small values of 7. In the regular case, X(+, +) ~ P, (by (1-2-1)) and so the second
term in (5-6-1) is, by (3-2:6),

X4, 1) e P(r) ~ =28 [Ty dr - 2 @

— = T
6C? Jo 180 (%
But we saw that X(+, —), or P{Vis correct to order 77, so that the major part of the error is
in fact due to the second term. This corresponds to the fact that for small intervals at least
the assumption of independence is invalid (Palmer 1956).
In the singular case the second term is zero at the origin and so

McF(r) = X(+, —) = 1-218a.

The error is therefore the same as in P{" (see equation (5-1-4)).
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(b) Large values of 1. Since X(+4, —) and X(4, +) both become equal to W(+) at

infinity. The solution to the limiting equation
F(r) = W(—l—)—W(—}—)JOF(T—«T') dr’
is F(r) = W(+) e ",

a negative exponential. Hence we expect McF(7) to tend to zero exponentially at infinity.
The results of §§5-1 and 5-6 are summarized in table 1.

TaABLE 1. COMPARISON OF DIFFERENT APPROXIMATIONS TO P (7)

error for small 7
A

approximation ' regular case singular cast; error for large 7
P{ =MC-0 % %78 0-062c Wi(+)
PP — 51*—(81—1)—' %}5719 —0-008« —-W(+)r
MC-1 %% %: 78 0:040c sW(+)
by = F _%%74 ~0-155% o(1)
bs —§71— %:T“ —0:097a o(1)
bs _9£6 %‘r“ —0-067c o(1)

v i %T 0-345a o(1)
P ET 02002 o(1)
e 1_16 %T 0-1350 o(1)
MCcF _T;—O Cé?" 76 0-062 (1)

5-7. The narrow-band approximation
Let E(o) denote the spectral density of f(¢), related to ¥ () by the equations

E(0) = % f : U (#) cos oty

() = f * E(0) cos otdo.
0
The mean frequency of the spectrum is defined as @ = m,/m,, where
m, = fw E(g)o7de
0

is the rth moment of the spectrum. It is convenient to write also

4y = j :E(a) (r—7) do.
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The spectrum is said to be narrow if

and it can be shown (I) that in that case ¢(¢) has the form
¥ (t) = A(t) cosat-+ O(dat)3, (57-1)
where A(¢) is a slowly varying function of ¢

A(t) = po— 31 = Yo(1 — $0%021%).
Under these conditions one expects f(#) to have the form of a sine wave of almost constant
frequency @ and slowly varying amplitude, so that the greater part of the distribution
Py(7) lies within the neighbourhood of 7, = 7/7. In fact the approximation ¥(7) of equation
(5-4-2) reduces to 1
£(r) =

" 207g[ 14 (1—79)2/ (979) 2]}
provided (7—7,) is comparable with 07,. It can be shown that all the other approximations
discussed in this paper have the same limiting form as § = 0. This approximation will be
called the narrow-band approximation and will be denoted by NB(7). It has the following
properties:

(1) Itis symmetrical about the mean point 7 = 7,.

(2) For large values of (1—7,) it is of order |7—7,|~3, and so has no second moment.

(3) The maximum probability density is

1
NB(TO) = 2_8*7*_‘(;.

(5-7-2)

(4) The width of the curve where it reaches half its maximum height is given by
2 % (28 —1)% 07y = 1-53307,.

(5) The cumulative distribution function is

i B (7“70)/(370)
AT o ory

(6) Hence the quartiles are given by

[

T—Toﬁ_l_
oty /3

and the interquartile range is 1-15507,.

= 0-5774

5-8. Numerical computations

In this last section, the various approximations to Fy(7) described in §§5-1 to 5-7 are
compared by numerical computation over values of 7 not necessarily very small or very
large. Where possible, the results are compared with those obtained experimentally by
analogue methods (Favreau et al. 1956; Blotekjaer 1958).

Only these approximations are shown which are the highest of their type at present
available. For example, MC-0 is not shown if MC-1 is available, and p., p, are not shown
if p; is available.
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Figures 3 to 7 show the approximations pj, p¥, P, McF and MC-0 (or MC-1) for spectra

of the form

E(g) = o2/(1402)m
(see table 2). In two cases (figures 3 and 6) the spectra are O(¢~*%) at infinity so that ¢ has
the singularity discussed in § 4. Figure 3 corresponds to the case discussed in § 4-6, where it
was shown that P,(7) is not a negative exponential, as the observations might suggest.

The experimental results of Favreau ef al. are indicated in figure 3 by the plotted points
(the vertical lines indicate the estimated uncertainty of the observations); in figures 4
to 7 the experimental values (Favreau et al.) are shown by broken curves.

The curves which form lower and upper bounds of F—namely P{? and MC-0 or MC-1—
are drawn rather more heavily than the others. From figures 3, 6 and 7 it will be seen that
at small values of 7 the experimental points lie considerably below the theoretical lower
bound. This implies that in some other parts of the curve the experimental points must
be too high, since the total area under each curve must be unity.

TABLE 2
figure E(o) P(t)
3 (1+02)-2 eH1(1+ )
4 (1+02)3 e (1 +[t]+322)
5 (1+0%)7 e (L 4[]+ 3 2+ |t +bs t*)
6 o1+ 0?24 e 11+ |¢| — 282+ % |¢)
7 (1 +02)3 (L 4|1 — 32— 3|1 +3 1)

Nevertheless, there is substantial agreement between the experimental points and the
three approximations p¥, P and McF. For all except small values of 7 the agreement with
25 1s less good than with p¥.

Figure 8 shows a similar study in the case of the Butterworth spectrum

E() = 1/(1+0"),

which has a fairly sharp cut-off at about ¢ = 1. The plotted points are those of Favreau
et al. (1956). Evidently the agreement between the observations and the theoretical curves
p¥, P@ and McF is quite close. In the range 6 < 7 < 8, where P{ is the uppermost of the
three curves P must also be the closest approximation, since it is a lower bound.

For the low-pass spectrum
[ 1 (0<o<1),

Elo) “lo (1<o< ),

the best experimental results available appear to be those of Blétekjaer (1958), which are
represented by the broken curve (B) in figure9. It will be seen that the agreement with McF
is fairly good, with p¥ somewhat better, and with P very close indeed, as far as 7 = 14.
For the band-pass spectrum
0 (0<o<ay),
E(0) =41 (<0<,
0

(1 <o <o),
72 Vor. 254. A.
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P can be expected to be an even closer approximation than that for the low-pass spectrum,
since some of the low frequencies will have been eliminated. Accordingly P has been
plotted in figure 10 for ¢, = 0, 4, 2 and %. It will be seen that as ¢, approaches 1 and the
spectrum becomes narrower so the distribution also becomes narrower and the height of

4 T | T T T T
" ﬂ o=k |

3 ]
P('l)—- h

[

2 |

l__.

. — I o
0 2 T 4 6

Ficure 10. Computed values of P,(7) for a band-pass spectrum
(low and high cut-offs at ¢;-and 1, respectively).

the maximum probability density is increased. The position and height of the maximum,
and the width of the curve at half the maximum height are shown by the full curves (a),
(b) and (¢) in figure 11. (For plotting these curves the distributions P for ¢, = 0-1, 0-2,
0-3, 0-4 and 0-6 were also computed.)
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A comparison may be made with the narrow-band approximation of § 57, which gives
for the abscissa of the maximum
7o =2m(1+40,)!
and for the height and width of the distribution (2d7,)~! and 1-5337, respectively, where

_2m 1—a
ERVER R
These values are represented by the broken curves in figure 11. It will be seen that for

7, > % the narrow band approximation agrees well with P{? but there are noticeable
divergences when o, < 1.

or

0 10

Ficure 11. Characteristics of the distribution of intervals in a band-pass spectrum. (a) Abscissa
of maximum; (4) ordinate of maximum; (¢) width of distribution at half the maximum height.
The full curves represent PP; the broken curves the narrow-band approximation. Plotted
points correspond to experimental curves of Blétekjaer (1958).

In the same figure some experimental results due to Blotekjaer (1958) have been inserted.
As one would expect, they agree with P§ rather than with NB. In particular one may note
the slight negative trend in curve (a) as ¢, approaches zero.

The author is indebted to S. O. Rice, D. S. Palmer and J. A. McFadden for stimulating
correspondence, and to the latter especially for useful comments. A reference to the work
of M. L. Mehta was provided by F. J. Dyson. The computations on p, and p} were carried
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out by Miss D. B. Catton on the DEUCE at the Royal Aircraft Establishment, Farnborough;
the computations on P were carried out at the Mathematical Laboratory, Cambridge, by
Mrs M. O. Mutch and Mr P. F. Swinnerton-Dyer.
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